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HOMOGENEOUSLY TRACEABLE RESULTS IN CLAW-FREE GRAPHS
by

Lisa R. Markus*
Department of Mathematics
Furman University
Greenville, SC 29613

ABSTRACT

A graph G is homogeneously traceable if for each v € V(G) there is a Hamilton path
starting at v. In this paper we find a sufficient condition for a claw-free graph to be
homogeneously traceable in terms of a neighbourhood union condition.

Preliminaries

A graph G is said to be homogeneously traceable if for each v € V(G) there is a
Hamilton path starting at v. We will call a path a v-path if it starts at v.

Theorem 1{3]
If G is a 3-connected, claw-free graph such that

IN(u) U N ()| > (2p - 5)/3

for all nonadjacent pairs of vertices u,v then G ic homogeneously traceable. O

Clearly, any graph that is Hamiltonian is also homogeneously traceable.

Theorem 2[4]
If G is a 3-connected, claw-free graph such that

IN(u)UN(v)] > 11(p—T7)/21

for all nonadjacent pairs u,v then G is Hamiltonian. O

So Theorem 1 is a corollary of Theorem 2. 93—' 14‘7 27

Theorem 3{1)
Let G be a 2-connected graph with \\

IN(u) UN(v)| 2 p/2
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for all nonadjacent pairs of vertices u,v. Then either G is Hamiltonian, or G is equal to
the Petersen graph, or G is a spanning subgraph of one of the following families:

a) I, + (K, U K, U K,);

b) Ki + (K UK, UK,UT), where q,r,s > 2 and T is the edge set of a triangle containing
exactly one vertex or K, K, and K,;

¢) KqUK, UK, UT,UT;, where q,r,s > 3 and Ty and T, are the edge sets of two
vertex-disjoint triangles each containing exactly one vertex from Ky, K, and K,. O

This Theorem generalises each of Theorems 1 and 2, since none of the exceptional
graphs are 3-connected.

In [5] Lindquester investigated the effect of distance on neighbourhood union condi-
tions.

Theorem 4[4]
Let G be a 2-connected graph with

[N(u)UN()[ = (2p-1)/3

for all pairs of vertices u, v at distance 2. Then G is Hamiltonian.
Results

We will obtain a sufficient condition for a 2-connected, claw-free graph to be humo-
geneously traceable in terms of the neighbourhood union of vertices at distance 2. First.
we will need the following Lemma.

Lemma §

Let G be a 2-connected graph. Let P = vy,vy,...,um be a longest vy, path. Then
there is a path P’ = uy,u2,...,um = v with V(P') = V(P) such that in P’, u, is adjacent
to some vertex u¢4) and not to uy.

Proof

Let P be a longest v;m-path and suppose that there is no path P’ with the required
property. Let @ = uj,uz,...,um = Um be a v,-path with V(Q) = V(P) and the degree of
(u;) as large as possible. Then @ is a longest v,,-path.

Traversing Q from u; towards u, let v,4; be the first vertex to which u; is not
adjacent. Then u; is adjacent to us,us,...,u, and the degree of u; is ¥ — 1. Then u; 1s
not adjacent to any other vertices of P else we can put @ = P’ and we’re done. Since G
is 2-connected, u, cannot be a cut point. Now if one of ug, u3,....u, -1, say uy, is adjacent
to some y ¢ @ we will immediately get the longer v,,-path

Uy Up—1y-o s Uk, U, U2, Uk Y.

Thus one of us,us, ..., ur—1, say un, is adjacent to a vertex ug with g > r. Note that u, is
adjacent to u, 4. Take the path

W it 1 U U g U1 U U U
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This is also a longest vy,-path with V(W) = V(P). Now if u, is not adjacent to all of
Un—1,Un—~2,- ., U1, Unt1, Un+2, .., Uy then we have a path with the required property. On
the other hand, if u, is adjacent to all of these, then the degree of u, is at least g—1 > r—1
and we have a longest v, -path where the degree of the first vertex, u, is greater than the
degree of the first vertex of @, contradicting the choice of Q. O

Theorem 6
Let G be a 2-connected, claw-free graph with

T IN(u) UN(v)] > (p - 3)/2

for all pairs of vertices u,v at distance 2. Then G is homogeneously traceable.

Proof

Let G be a 2-connected, claw-free graph with [N (u) U N(v)| > (p — 3)/2 for every
pair of vertices u,v at distance 2. Let z € V(G). We aim to find a Hamilton path with
end vertex z. Let P = v;,v2,...,tm, Um = z, be a longest path in G with end vertex :.
If m = p we are done, so suppose m < p. Then there is a vertex z. z ¢ P. Since G is
2-connected, there are at least two openly disjoint paths from z to P. Let the two end
vertices of any set of such paths with the lowest subscripts be vy, 1y, where k < I. Without
loss of generality we can assume zv; € E(G). Since G is claw-free and 1 < k < m. we have
vk-1k+1 € E(G). Now [ # k + 2 since if | = k + 2 we get the longer v,,-path

UmyVm—1, ., U, DU, Uk 1y Uk m 1y Uk =2y -y U1

Thus{ >k + 2.

Now by Lemma 5 we can assume that there is a vertex v; so that vy is adjacent to
ve+1 and not to vy. Choose the smaliest ¢ for which this happens.

Now t # k since this would imply v; is adjacent to vi3; and we would get the longer
vm-path

Uy Unie 1y ooos Uk 15 U1 V24 oony Uk, T

Also t # k + 1 since this would imply vy is adjacent to v44, and we would get the longer
Um-path
Umy V=15 ooy V42, U1, V20 oy V=1 s Uk, Uk, T
Thust # k,k+ 1.
Traversing P from v, towards v,,. let v,,; be the first vertex to which v; is not
adjacent. Then vy is adjacent to vy, v3, ..., vy, and not adjacent to vryp. Vrgo, ..ot NOw
r < k since if vy is adjacent to vy we get the longer vy, -path

Ums Um—1, 0y Uy T, 08, 01,02, 0y Uk o1 Uk 1, k4 24 000y Uil e
Thus r < k.
We will arrive at o conttadiclion by chiowing Jduat thereis a 1:1 mapping from N (v ) U
N(vy) to V(G) — (N{vi=1) U N(x)). Note that r;,v, are vertices at distance 2 by the
definition of t. Also r.vj~; are distance 2 apart since vy € E(G) and xvy-y ¢ E(G).

LA
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Let y € N(v1)UN(v(). Supposey ¢ P. Then since P is a longest v,,-path, y ¢ N{(v;)
and if y € N(vy) we get the longer v,,-path

UmyUm—1,. 3 Vt41,%1,02,...,0¢, Y.

Thus we have y € P, and so y = v, for some s.
We will now consider 2 cases for !:

Case 1: Suppose | < m. Note that since G is claw-free and P is a longest v,,-path we have
vi1vi41 € E(G).

We have already shown that t # k,k + 1. By similar arguments, t # [, 1+ 1. We will
now show t # [ — 1. Suppose t = ! — 1. Then v, is adjacent to v; and we get the longer
v -path

Uty Umm1y ooy Uik 1y Vlm ] e V2m2y oony U1, UL, T

Thust #1—1.
We have also previously shown that | # k + 2. We will now show that [ — 1 # & + 2.
Suppose l — 1 = k + 2. Then we will get the longer v,,-path

Im s Um—1y -y Vl4 1, V=1, VL Ty VL, Vg 1y V=1, V=20 -, U .
Thusl—1#k+2.
Let vy € N(v1) U N{vy). Now clearly s # 1,¢ by the definition of t. We claim
s#k,1-1,L
Suppose first s = k. Now if vp € N(v;) we get the longer v,,-path

UmyVUm—1y oy V41, Uk -1, Vk=245..-, V1, .
So suppose vx € N(v;). Then for t < k we get the longer v,,-path
UmsUm=1,y -y Vk4+ 1y Uk =15 V=25 s Vt41, V1, V2, ., U, Uk, T
and for t > k we get the longer v,,-path
Uity Ul oo Ut 1o V1o U2y oo s Ul m 15 Uk 1 Vb 25 en Ut Uy T

Thus s # k. By similar arguments, we can show s # [.
Now suppose s =1 — 1. If vj_y € N(v;) we get the longer v,,-path

vm,vm_],...\vp..f,vk,vk-l,.,..vl,w_l,vz__g,...,ka.
So suppose vi—; € N(v;). Then for t < k we get the longer v,,-path
UmsUm—1, 3 UL, Ty Uk y Uk =1y ooy Ut 1, V1, U2, -y Uty V=1, V=2, -0y k41,
for k <t <l we get the longer v, -path

UmaVUm—1y oy UL T Vky Uk 3 o U o U 1 Ut 25 o VT 1 Ve Ut ]y o0y Uk




and for t > | we get the longer v,,-path

Um,, Usmn =150y Vg1, U1, U240, Up— 3, U, Up o,y o U T

Thus s # 1 - 1.
Let vy € N(v1). Now s # k + 1 for if it were we would get the longer v, -path

UmyUm—~1y--3 Uk41,V1, V2, ., Vg, T,
Similarly, s #1 + 1. Now if v,_; € N{z) we get the longer vm-path
UmyUm-~1y...5Ug,V1,02,...,V0s—1,4.
Also, vy ¢ N(vi—1) for if it were, for if 1 < s < k we would get the longer v,,-path
Uiy Umim1s ooy Cly Ty Uky Uk Ts ooy Vimls Vgl Usm2y ey Uy Ugs Uspdy ooy Vhm 1
ifk+1<s <l—1wewould get the longer v,,-path
UmyVUm=1:-- VUL, T30k . V=143 U1, Vg UVgg1y-ees U1y Vg —1, Va2 ooy Uk
and if s > 1 + 1 we would get the longer v,,-path
VmsUme—1s--, Vs, V1,02, ... V) Usm1. Vg2, .... LU}, T.
Thus if v, € N(v1) we have vg_1 ¢ N(vi—1) U N(z).

Again consider vy € N(vy). For k + 1 < s < in we have v,41 € N(z) for if it were we
would get the longer v,-path

UmyUm—1, s Va1, T, VL, Vh—1y .., U1, Vs y Ug—14 oo Vh+1-
Forl+ 1< s <m,ve41 € N(vi—1) else we get the longer v,- path
Umy Um—1y oy Us41, U=, V=2, . V), Vg, Vg1, -0 UL T

There are now 3 possible locations for t: 1 <t <k, k+1<t<!—-1landt>1+1.
We will now consider these 3 cases for ¢.

Case 1.1: Suppose t > [ + 1.

Let vy € N(v;)UN(vy). We have already shown that s # 1.t k.1 —1,1. We now claim
s # k+ 1. Note that we have already shown that vy € N(vy). So suppose vrs+y € N(ve).
Then we get the longer v,,,-path

UmyUm—1, oy Ut 1, U1, U2, s Uk T UL Uty e oy U V31 Vg2 U1

So vi41 € N(vg) and therefore s # k + 1.
We consider 2 subcases:

<




Case 1.1.1: Assume v;-; is adjacent to some vertex v, with ¢ < k.
First we claim ¢ # k — 1 since if vz_; € N{v;—1 we get the longer v,,-path

UmyUm—=15-y V1, T, Pk s Uk41y .0 Uleely Uk =1,y Vk =2, ---, U} .
Thus ¢ < k — 1. Also, ¢ # k — 2 for if vg_o € N(v;-;) we get the longer v,,-path
UmyUm—1, s V0 Ty Uk y Uk =1, Uk+1, V42,5 -y VI—-1, Uk —2, Vk -3, -y VI

So we have ¢ < k - 2.
Recall v, € N(vy) U N(v;). Now s # k — 1 since if vi—; € N(v;) we get the longer

UmsVUm—15-- U, Ty Vk, Uk+15 s Vi=1, Vg, Ugg 1y o5 Vk—1,5 V15 V2, 0y Vgt

and if vi.; € N(v;) then we will get the longer v,,-path

Umy Um—1y -y Vt41, V1,025 000y Vo1, Uty Vt—14 000y Uk, T

Sos# k—1.
We will now construct the 1:1 mapping from N(vy)UN(v¢) to V(G)— (N {(vi-1 )UN{z)).
First suppose s <k ~lork+1<s <!—1. Nowv,_; ¢ N(z) by the choice of k,!.
Again recall vy, € N(v;) U N(v;). Suppose v, € N(v;). We have shown above that
vs—1 € N{vi—1) U N(z). Now suppose v, € N(vy). Then v,_y ¢ N(vi-1) else we get the
longer v,,-path

Um,Um=—15-3 V41, V1, V2,0 s Vsg=1. U1, V=2, .00y Uy, U, U1, -0, UL, T
So for the case s <k, k+2 < s <l-1let v,_; be the vertex corresponding to v, in the
1:1 mapping.
Now suppose l < s <tort < s <m.

Suppose v, € N(v;). Then we have shown above that vey; € N(vi—1) U N(z). So
suppose v, € N(v¢). Then vy ¢ N(vi-1) else for s < t we get the longer vi,-path

vm,vm_l,,.‘,vH;,v;,vz,...,1.'1..;,v3+1,v,+2,...,v,,v,,v,_l,...,vl,x
and for s > t we get the longer v,,-path
UmsUm—=1y.9 Vs 1, V=1, 01-25 s V1, U141, U142, -y Vs U, Vg1 .., UL, T
Also vy ¢ N(x) for if it were for s < ¢t we would get the longer v,,-path
UmsUm—14-s V415 U1 V2,000, Vay Uty Ugmgy ooy Vg1, T

and for s > t we would get the longer v,,-path

Umy Ump—1 s ooy Va1, Ty Uk V1 o oy U1 Uy 10 Ug 425 - Vg s Uy Uy o Uk 4 1 -
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For the case [ < s < t,t < s < m let vy4; correspond to v, in the desired 1:1 mapping.

Note that we have not found an image point corresponding to v,. We claim to
have found a 1:1 mapping from N(v1) U N(v¢) — v, to V(G) — (N{vi—1) U N(z)) —
{vk-2,vk—1,v1-1,2}.

Clearly we have shown a 1:1 mapping from N(v;) U N(z) — v, to a subset S of
V(G) = (N(vi-1) U N(z)).

We now claim vg—2,vk—1,v1-1,2 &€ S.

First suppose vi—2 € S. Then vik_p = v, or v,4; for some s. But vx_2 = v,
implies s = k — 1 and vp_2 = ve4) implies s = k — 3 > !, both contradictions. Thus
vk-2 € S. _

Next suppose vi—; € S. Then by the way we have constructed our 1:1 mapping we
have vg_; = vs—1 OF ve4q Where v, € N(v;)U N(v). But vx_; = v,_; implies s = k, but
we have already shown that s # k. Also vx_; = v,y implies s = k=2 > [, a contradiction.
So Vi1 ¢ S.

Now suppose vi_; € S. Then v;-1 = v, or vs4; for some s with vy € N(v))UN(vy).
But v;_1 = v,_; implies s = [, a contradiction and v;—) = vy} implies s = [ —~2 > [, again
giving a contradiction. Hence vy ¢ S.

Finally suppose z € S. Then z is the image point of some y where y € N(v;) U
N(v¢) — vp,. But all the image points areon P and r ¢ P. Thusz ¢ S.

Now it can be easily seen that z,v;_; & N(vi—1) U N(z). Also, clearly vi_y ¢ N(z)
and if vg—; € N(v;—1) we get the longer v,,-path

Umny Um—1,+s ¥ Ty Uk s Ukp 1y ooy Vi1, Vhkm1, Vk—2, -, U1
Again, by the choice of k, vi_2 € N(z) and if vy € N(v1-1) we get the longer vy,,-path
Uy Crnmls ooy Uty Ty Uk s Uk 1« Ukt 1o Uk 2y ooes Ve Vkm 2 Uk =3 oen U1

Thus vg—2,vk-1,01-1,2 ¢ N(vi-1) U N{2).
We get
(p=3)/2—-1<|N(1)UN(vs) = Um|

<|V(G) = (N(vi-1) U N(2)) = {7, vh2, V-1, 211 ]
<p—-(p-=-3)/2-4=(p-3)/2-1

a contradiction.

Case 1.1.2: So we can assume vj_; is not adjacent to any vertex v, where q < k.

Recall that v, € N(v,) U N(v¢) and s # 1,t,k,k 4+ 1,1 — 1.1 We will construct a 1:1
mapping {from N(vy)U N(v() to V(G) — (N(vi-y) U N(z)).

First suppose s < k. Then by the choice of k, v, ¢ N(z) and by the hypothesis of
Case 1.1.2, vy, € N(vi-1). So let v, correspond to itself when s < k.

Next suppose k + 1 < s < I — 1. Then by the choice of ¢, v, € N(v1) and so assume
vy € N(v(). Now v,_; ¢ N(z) by the choice of &,l and ve—y € N(vj-y) for if it were we
would get the longer v,,-path

Vs U1y ooy Ut 15 V15 V20 s Va1 VT 1y V=20 ooy Uy Uty Ve y ey v, I,

{




So let v,_; correspond to v, for thecase k +1 < s < [ — 1.
Now let ! < s < t. Again by the choice of ¢, v, ¢ N(v;). So assume v, € NV (v;). Now
V41 € N(z) for if it were we would get the longer v-.-path

UmyVUm—1, ., Vt41,V1,V2, .., Vg, V1, V=1, -0y Us41, Z-
Also vyy1 ¢ N(vi—)) else we get the longer v,-path
Um,vm_l,---,vi+1,'l)],v2,---,UI_.],U3+1,U3+2,...,U3,U3,v;~]1--., U, T.

Soforl < s <t let vy4; be the correspondent of v,.

Finally suppose t < s < m.

Recall that v, € N(v;) U N(v). We will first suppose v, € N{v;), and show that
ve & N(vi-1) U N(z).

First suppose s < m. Then v, ¢ N(z) for if it were we would have v,_1v,41 € E(G)
since G is claw-free and get the longer v,,-path

Umy¥m-1, s Usgt 1, Vs, Vs .0, U, Uy, T

Now suppose s = m. Then v, ¢ N(z) for if it were we would have v},vm-1.2 € N(tpm).
Now G is claw-free and viz,vm—17 ¢ E(G) so we must have v—1 € N(v;). But then we
get the longer vn,-path

Um sy TyVky Vhk=15 s V1. Ui 1 U2y ooy Ukl -

So for vy € N(vy) for t < s <m we have v, & N(2).

Recall that t < s <m and v, € N(vy). We have v, € N(v;-) for if it were we would
have vy, v1-1,vs-1 € N(v,). Since G is claw-free and vyv(-; ¢ E(G) we have either vjv,-;
or vj—1vs—1 € E(G). But if vyv,.1 € E(G) we get the longer vi,-path

UmsyUm—13-3Vas V14 Vl2y ooy UV Uy, V=2, ... U1, T
and if vy_jv,—1 € E(G) we get the longer v,,-path
UmsUm—1y -3 Vs, U1, U2, ooy ULy Vs Vs =2, - UL, T
So we have shown that for v, € N{v1). t < s <m we have v, € N(vi_)U N(z).
Next suppose v, € N(vy) where t < s < m. Again, we will show that v, ¢ N(vj_;)L
N(z). Now we can assume s > t+ 1, since if s = t + 1 we have v, = v,4; € N(1y), and we
have just shown vy = veyy € N(vi—y) U N(z).

First suppose t +1 < s < m. Then v, € N(r) for if it were we would have v_ 14, €
E(G) since G is claw-free and get the longer v,,-path

Ums Ui e 1 e ey U 10 Ua— 1o D2y s Vg U Uy Uy, Ul T

o




Now suppose s = m. Then v, ¢ N(z) for if it were we would have v, v;m-1,7 € N(vm).
Now G is claw-free and vyz,vm-1z € E(G) so we must have v,-; € N{v). But then we
get th~ longer v,,-path

Um s Ty Vky Uk 1y ooy V1, Ut 1, Vt4 25 o3 U1, Uty Ve m1y oy Vg

So for vy € N(v¢) and t + 1 < s < m, we have shown v, € N(z).

Again recall ¢t +1 < s < m, where v, € N(vy). We have v, ¢ N(v;.) for if it were we
would have vy, v, 051 € N(v,). Since G is claw-free and viv;_y ¢ E(G) we have either
ViV~ OF y_1vs—y € E(G). But if viv,-y € E(G) we get the longer v,-path

UmsUm—1y - Ve V=1 Ul=2, -y V1 Ued 1, Ve 25 -y Vs Ve, Ve, - UL T
and if vi_yvs_1 € E(G) we get the longer v,,-path
Vrny U 1o ees Uy Uty DT s coes Up Ta Uk Tkt g e Ulm 1y Vgm1 s Vg =2,

U R P LI 17 DU S S

For v, € N{vy), t + 1 < s < m we have that vy € N(1vy-y). Thusfor t < s < m let v, be
the correspondent of v, in our 1:1 mapping.

We claim we have found a 1:1 mapping from N{vy) U N{vy) to V(G) — (N(v—1) U
N(z)) - {v1,vi-1,7}. Clearly v1,vi-y. 2 € N(vi—1)UN(z). We have shown a 1:1 mapping
from N(v;)UN(v¢) to a subset S of V(G)—(N(v/—1)UN(x)). Wenow claim vy iy—1.2 € 5.

Suppose vy € S. Then v; = vy, vy or vgq; Where vy € N(vy)U N(v). But vy = v,

implies s = 1, v; = v,_; implies s = 2 > &£+ 1 and vy = v,y implies s = 0, all
contradictions. Thusv; ¢ S.
Next suppose vi—y € S. Then 11 = ve.vy-) OF vy41 for some s. But vy = v,

implies s =1 — 1, vj—; = vy implies s =l and vj_; = vy4; implies s = [ =2 > {, all
contradictions. Thus vj-, € S.
Finally z ¢ S for all the image points are in P and = ¢ P.
We get
(p—3)/2 <IN U N

< IV(G) = (N(ve=1) U N (2)) = {vr,vi-1, 1}
<p—-(p—-3)/2-3=(p-13)/2

a contradiction.

Case 1.2: Suppose k+ 1 <t <! — 1. Again, we will arrive at a contradiction by showing
that there is a 1:1 mapping from N(v;)U N () to V(G) = (N(vi=1)UN(x)). Recall that if
y € N(v;)UN(v,) then y € P and y = v, for come 5. We have shown that s # 1.t k7111
We now claim s # 1+ 1,1 4+ 2. For suppose 141 € N{v;). then we get the longer v,,-path

Uiy U1y oo Vi1 U, U200 1, T

9




and if vi4+2 € N(v;) we get the longer vy, -path

VmyUm=1, -y VI42,V1,V2, .y Vi—1, V41, V1, T.

(Recall that vi_yvi41 € E(G) since G is claw-free.) Also if vi41 € N(vy) we get the longer
vm-path
UmsUm—1, o V41, Ut Vt—1, -y V1, Vi1, V42, -0, UL T

and if vi42 € N(v,) we get the longer v,,-path
UmsUm—13 -y VI 2, Ve, Vtmy o, V1, UVt 41, V142, -0, Vi1, U141, U1, T

Thuss #1+ 1,142,
We will now consider 2 cases:

Case 1.2.1: Assume () is adjacent to some vertex vg where ¢ < k.
As in Case 1.1.1, we have ¢ < k — 2.
We will now show s # k — 1,k — 2 where v, € N(v;) U N(vy).
Suppose vg—; € N(v1). Then we get the longer v,,-path

Usns Umnm 1y ooy Uls Ty Uk y Uk 1y oo s UIm 14 Vg Vg ls ooy U1y Uk m 12 Uk =20 oou Ugt 1 -
Now suppose vi—z € N(v1). Then we will get the longer v,,-path

Uy Uy ooy Ul Ty Uk y Ve 1y Uk 1y TCheb 2y oooe Vi 15 Bg e Vgl oo U1y Uk 1 Vh =2y oos Ugte 1 -
Next suppose v4—-; € N(v¢). Then we get the longer vn,-path

Uyny Upnie Do evey P 1s U1 U2y coey Uk Ja Uty U1y oeey Vo I
Finally suppose vi_2 € N{v¢). Then we will get the longer v,,-path
Uiy Urnim s ooos Ut Ly Uy U2y voey Uk 20 Uty Chmdy ooy Uk 15 Uk 1y Uky X

Thuss#k -1,k -2,

We will now construct a 1:1 mapping from N (v )UN(ve) to V(G) = (N{vi- )UN(2))
Recall that v, € N(vy) U N(vy).

Suppose s < r. Then v, € N{v;). Now v._; ¢ N(z) by the choice of k and v, ¢
N(vi-1) else we get the longer v,,-path

L T L A N L A N O R £ P A T A P L N I T
So for s < r, let v, be the correspondent of v, in our 1:1 mapping.
Now suppose r < « < k — 2. Then v, ¢ N{vy) and therefore v, € N () by the choice
of r.t. By the choice of k, vepy @ N(x). Also royy € N(v-q) for if it were we would get

7 -
the longer v,,-path

Uy Vm =ty ULl 0k s Uk e e e a Vg 1 U s V=2 c Ut U U2 [EFN YR AV TR 3 SV S I
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Thus for r < s < k = 2, let vy4, correspond to v, in the 1:1 mapping.

Next suppose k < s < t. Then by the choice of ¢, v, ¢ N(vy). Suppose v, € N(v¢).
Then v,4; ¢ N{z) by the choice of | and vs4) ¢ N{vi—1) for if it were we would get the
longer v,-path

UmyPm—=1,- sV, T,V Vk-1, -'--vl)vt-}-lvvl*f-?- -“)vl-—lav$+]ava+27

ey Uy Uy Ugmty ooy Vi -

So let v,y be the correspondent of v, when k < s < t.

Finally suppose it < s <l —lorl+2<s<m.

First suppose v, € N(v1). Then v,o; ¢ N(vj—1) U N(z) as above. So suppore
vy € N(v¢). Then v,_; ¢ N(z) else we get the longer vi,-path

UmsyUm =12y Usy Ve Uty o U1, Ut  Pe 42,y 00y U1, T
Also vo_y ¢ N(vj_y) for suppose not. Then for s <! — 1 we get the longer v,,-path
Ums Umm 1y o U, T, Uk, Uk Troes UL Uty Vg2 ooy Vg —1, VI-1,Vi-2,

B A N N R Y =55 |

and for s > [ 4 2 we get the longer v,,-path
Ums Um—1s e Vs Uy Ve el U0 Vg 1 V1420 Vi1, Us =1, Vs =2, o VL T

Sofort <s<l~-1lorl+2<s<m. letuv,; correspond to vy in the 1:1 mapping.

Note that 7 has been chosen as an image point twice, once for the case k < s < ¢t and
again for thacaset < s < I—1. We claim we have shown the existence of a 1:1 mapping from
N(u)UN(vg) — vy to V(G) = (N(vi-1)UN(2)) = {vi=1,vk+1,v1-1,2}. Clearly we have
shown a 1:1 mapping from N (v, }UN(vy) —vi-1 to asubset S of V(G) = (N(vi—; JUN(1)).
We now claim vg—y, vrp1,v-1.7 € S.

Suppose vi-; € S. Then vi-; = v,y or vg:; where vy, € N(v;) U N(z). But
k-1 = Vg1 implies s = k and v4~; = vyy, implies s = k — 2. both contradictions. Thus
Uk ~1 ¢ S.

Next svppose viy; € S. Then vy == ve—1 Or vy4; for some s. But viyy = v,y
mmplies s =k +2 <rors=~k+2 >1t, both contradictions since r < k and ¢ > k+ 1. Also
Uk41 = Vg4 imuplies s = k another contradiction. Thus vy ¢ S.

Now suppose 1y-y € §. Then vy = v, or veq for some s. But vj_; = v,y implies
s=1land viy = veqy; implies s = = 2 < ¢, both contradictions. Thus vj—; € S.

Finally z ¢ S since all the image points are in P and z ¢ P.

Clearly v_;,7 @ N(vi-y) U N(x). Also vy_1.vr4y ¢ N(z) and earlier in this case
we showed vr_y ¢ N(roy). Now ey € Nlvyoy) for if it were we would get the longer
tm-path

L S A A A o Lt T A S S T AV VI T A7 S T AF QNI T 8 SR APTO &
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Thus vy, Vi1, V-1, & N{vi—y) U N(z).
Thus we have
(p—— 3)/2 -1« iN(U]) U l\"(t}g) — L‘;-ll

<IV(G) = (N(vima) U N(2)) = {va-1, V41, V11, T}

<p-(p—-3)/2-4=(p-3)/2-1

a contradiction.

Case 1.2.2: So we can suppose v;—; is not adjacent to any vertex ¢ where ¢ < k.

Let v, € N(v;) U N(v¢). We will construct a 1:1 mapping from N{v;) U N{x,) to
V(G) — (N(vi-1) U N(z)).

First suppose | < s < k. Then by the choice of k, v, ¢ N(r) and by the hypothesis
vy € N(vi-1). Sofor 1 < s <k, let v, correspond to itself in the 1:1 mapping.

Next suppose k < s < t. Then by the choice of t, v, ¢ N(v)) so assume v, € N(v().
Now v,4; € N(z) by the choice of k,l and v,41 € N(vi-y) for if it were we would get the
longer vy, -path

vﬂIsvm—-ly"'?vlnlyvkyvk*lw"‘;vlirfﬁ-l«1‘(-{—'21"',vl—-]~1‘s+lnvs+25

ey Ut Uy Vgmyy ooy ULyt -

For k < s < t, let v,y correspond to v, in our 1:1 mapping.

Finally supposet < s <l~lorl+2<s<m.

First suppose vy € N(vy). Then as above, v,-1 ¢ N{vi-1) U N(z). So suppose
vy € N{v,). Then v,_; ¢ N(z) else we get the longer vm-path

UmyUm—15y Usy Ve, Uty s V1, VUt 1, Ve 20 0oy Vg1 T
Also ve_1 € N(vi—y) or else for s <[~ 1 we get the longer v,,-path
Urnts Usne By oeon Ve T Uk e Uk e e e UL o Vg 1 s U2 oeoa Vg1 Ul 12 V2 s

R O £ T Ar i B o A |

and for s > [ + 2 we get the longer v,,-path
UmaUm—le oy Uga Uty U1 ey U3 V11, Up 20 o V=12 Vg Um0 U, T

Sofort<s<l—1lorl+2<«s<m,letwv,.; correspond to v, in the 1:1 mapping.

Note that v, has been chosen as an image point twice, once for the case k < s <t and
again for the case t < s <! — 1. We claim we have shown the existence of a 1:1 mapping
from N(v; JUN(v)—vi—y to V(G) = (N(vi— JUN(2)) = {vy tk41.t1-1, 7}, Clearly we have
shown a 1:1 mapping from N (v, )UN(v) —v¢—; to asubset S of V(G)— (N (v )UN(7)).
We now claim vy, vpqq. 01—, € 5.

12
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Suppose v; € S. Then v; = v,,v,-; or vyy; where v, € N{vy) U N(vy). But v; = v,
implies s = 1, v; = v,_; implies s = 2 > t and vy = v,4; implies s = 0, all contradictions.

Thusv; ¢ S.

Next suppose vi4+1 € S. Then vy = vy, v,-) or vyy; for some s. But vgy; = v,
implies s = k + 1 < k, vg41 = v, implies s = k + 2 > ¢t and vg4) = v,4; implies s = k,
all contradictions. Thus vg4+; € S.

Now suppose vy € S. Then vj_y = v,,v,-1 or v,y for some s. But vi_; = v,
implies s = { - 1 and vj—; = v,—; implies s = [ both contradictions. N vy = vy
impliess =1 —2 < ¢, but by Case 1.2t <[~ 1, a contradiction. Thus v;—; ¢ S.

Finally z ¢ S since all the image points are in P and = ¢ P.

Clearly vy,vi—1,7  N(vi=1) U N(z). Also viyy € N(z) and viyy ¢ N(vi—y) for if it
were we would get the longer vm-path

UmsyUm—1seey VL, Ty ULy Uk ty ooy V1 Ve 1 Ut 420 s Ve 1y Uk 41 Uk 42y - -+ Ut
Thus vy, Vk41,v1-1.2 € N(vi-1) U N(x).

We get
(p=3)/2=1<|N(t1)UN(v) = ve]

<HV(G) = (N(vi-1) U N(2) = {v1, vk, viey, 7}
<p—-(p-3)/2-4=(p-3)/2-1

a contradiction.

Case 1.3: Suppose t < k.

Let vs € N(v1)UN(v). We have already shown s # 1,1, k,[ —1,1. We will now show
s#Fk+1,k+2o0rl+1.

Now vi41 € V(v1) for if it were we would get the longer v,,-path

Umy Um—15 0oy Vo1 U1, V2.0, UL T
and vi4y € N(v¢) else we get the longer vy,-path
Vs Um—1y ooy Ukt 1, Ut Vg pe o U Ve 1 Ut 425 -5 Uk, T
Also vigy2 € N(v1) else we get the longer v -path
Umy Um—le s Uk42. U1 U200y Uk =1, U413 Uk, T
and viye € N(vy) else v get the longer v, -path
UVns Umi—1, oy VA2, Uty Ut Ty oy UL Ut 1, Ut 24 ooy Uk =1, Vk41, Vi, T

Finally, vixy € N(vy) for if it were we would get the longer v, -path

UmaUmel ooy Vg1 U1 U200 T

13




and vi4; € N(v,) else we get the longer vy, -path

UmyUm—1y -y U411, Ve, Ugmyy o Un, Uty Ut 2, -, U1, T

Thuss#k+1,k+2o0rl+1.
We will now consider 2 cases:

Case 1.3.1: Suppose v;_; is adjacent to some vertex v, where g < k.
Now ¢ < k — 2 as in Case 1.1.1. Let v, € N(v;) U N(v;). Now s # k —~ 1 for if
Vk—1 € N(v1) we get the longer v,,-path

Uy Vm—1y ooy Oy Ty Uk, Ukl s ooy ¥l 1y Ugy Vgt y ooy ULy Uk 1y Uk a2y ooey Vg1 -
Also vg—; ¢ N(vy) for if t > g we get the longer v,,-path
vm,vmhl,...,vl,x,vk,vk+],...,vl..],vq,qu....._t’,,vk..;,vk_g,..,,v(“,v],rg,...,qu_;
and if ¢ < ¢ we get the longer vp,-path
‘Um,Um_.l,.-.,l’[,l‘,l‘k,l’k+].....l‘(..],?,-‘q,l’q_l,...,L‘H..l,v],UQ,

s Uty Uk Vhkm2y oy Vg1

Finally, if t = ¢ we get the longer vp,-path

UmyUm—1, -y VLT3 Uk, Uk 41, - Vi1 Ve Uy U, Ve 1, Ve 2, o Ukt

Thus s # k — 1.
We will now construct a 1:1 mapping from N (v1)UN(v¢) to V(G) — (N(vi-1 JUN(z)).
First suppose 1 < s £ r. Then v, € N{v;). By the choice of k, v,~; € N(z) and
Vg1 ¢ N(vj-y) for if it were we would get the longer vp,-path

UmyUm—1; -y VL Ty Uk Vk41, s Vlm . Vg1, Vg2 0, V1, Vg Vg 3y o0y Vh-1 -

Sofor 1 < s <7, let v,_; correspond to v, in our 1:1 mapping.

Now suppose r < s < t. Then by the choice of t we have v, ¢ N(v;) so assume
vy € N(v¢). By the choice of k, vs41 ¢ N{z) and ve41 € N(vi-;) else we get the longer
Um-path

Vrny Umnim1y ooog Uy Ty Uk y kb 1s eoee Ve 1« Vgt s Vg 15 oooa Uty Uss Uga 1

FP A5 IR Y I 5 [ AN T, O o iy I

For r < s < t, let v,y be the correspondent of v, in our 1:1 mapping.

Next suppose t < s < k —~ 1. By the choice of & we have v,y ¢ N(z). If vy € N{1y)
we have already shown vy ¢ N(vi1)UN(z). If vy € N(v¢) we have vy—; € N(vi-1) else
if s > t+1 we get the longer v,,-path

Umy U3y ooy VL T, Uy Uk ey Vs U U1y -y V1 Ve 15 V42,
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vy Vem 1, Vi1, Vi—2y o+ Vi 41

and if s =t 4+ 1 we get the longer vp,-path
UmyUm—13 -0 UV Ty Uk y Uk 4150 VI=15 Ve Ut 15 o VL, Uiy, Ve4 25 - Yk -1

So in the case t < s < k — 1, let v, correspond to v,.

Now suppose k+2 < s <1—1. By the choice of I we have v,_; € N(z). lf v, € N(v;)
then v,y € N{vi—1)UN(z). and if v, € N(v;) then v,_; ¢ N(vi-;) else we get the longer
Vm-path

UmyUm—1,-y UL Ty Uk, Uk—1, -3 Vt41,V1,02,...,U¢t, Uy, Ust,

ey Ul—1,Vs—11VUs—25 -y Ukt 1 -

In the case k + 2 < s < I — 1 let v, be the correspondent of v, in the 1:1 mapping.
Finally suppose l + 1 < s < m. Suppose v, € N(v;). Then v,y € N{vi-;) U N(z).
So suppose vy € N(vt). Then v,y ¢ N(z) for if it were we would get the longer v,,-path

Umis U150 Vg Uty Vem1, s U1, V41, V425 00y Vs =3, T
and vs—y ¢ N(vi—y) else we get the longer vm-path
UmyUm—1y-3 Vs Uty V15 .y V1, U415 Vt4 25y Vi1, Vg =1, Vg2, -, VI, T

Soforl+ 1< s <mlet v,_; be the vertex corresponding to v, in the 1:1 mapping.

Note that we have considered v, as an image point twice, once for r < s < t and again
for t < s < k—1. We claim we have found a 1:1 mapping from N{vy) U N(v{) — v¢—; to
V(G) - (N(‘Uz..l) U N(z) - {vk_g, Vhe1, Vi~1, J:}.

Clearly we have shown a 1:1 mapping from N(vy) U N(v¢) — vi~; to a subset S of
V(G) — (N(vi-1) U N(z)). We now claim vi—2,vk-1,v1-1,2 ¢ S.

Suppose vi—2 € S. Then vi_o = v,-; or vey; where vy, € N(v1) U N(v,). But
Vk—2 = vg—1 implies 8 = k — 1, a contradiction. Also v-9 = v,4; impliess =k -3 < ¢,
sot=Fk—~2o0rk—1. Butt==F-2implies 441 = vx~-1 € N(vy) and t = k — 1 implies
vi41 = v € N(vy), both contradictions. Thus vi_2 ¢ S.

Now suppose vi—1 € S. Then vi-; = v4-; or ves; for some s. But vy = vy
implies s = k, a contradiction. Also vy = vs4, implies s = k-2 < tsot=4k-—1. But
this implies vyq = ve € N(v1), a contradiction. Thus v4-; € S.

Next suppose vj—; € S. Then vj_; = v,_; or veq for some s. But vy = v,—; implies
s =1, a contradiction. Also vi—) = ve4 Impliess =/ ~2 < tsot =1—1> k, again giving
a contradiction. Thus v;—; ¢ S.

Finally, z ¢ S since all image points are on P and z ¢ P.

Clearly, vi—1,z ¢ N(vi—1) UN(z) and by the choice of k, vi_2,vk—1 € N(z). We will
now show vi_z,vp-1 € N(vi=1).

If vig € N(vi~1) we get the longer v,,-path

UmnsUm—1y s VL Ty Uk V), Uk 13 Uk 24 oy Vi1, V=2, V=30 -0y U
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(recall vg—qvr41 € E(G) since G is claw-free) and if vy_y € N(vi—;) we get the longer
vm-path '
UmyVm—=1y -1 Vs Ty Uy Vkply-o-y Vil Uk =13, Vk=2,.---, V1.
Thus vk—1,vk-2 ¢ N(vi~1) and vi_2,vk_1,v1-1,2 € N{vi-1) U N(z).
We get
(p—3)/2=1<|N(v1)UN(vy) ~ vey]

< V(G) = (N(v1=1) U N(z)) ~ {vk=2, k=1, V11, 2}]
<p-(p-3)/2-4=(p-3)/2-1

" a contradiction.

Case 1.3.2: So we can assume v;—; is not adjacent to any vertex vy where ¢ < k. Recall
that t < k.

Suppose 1 < s <tort < s < k. Then by the choice of k, v, ¢ N(z) and by hypothesis
ve & N(vi—y). Sofor 1l < s <tort<s < klet v, be its own correspondent in the 1:1
mapping.

Now suppose k +2 < s < ! — 1. By the choice of I, v,y ¢ N(z). If v, € N(v;) then
ve—1 & N(vi—1) and if vy € N(vy), then vy—; ¢ N(vi-1) else we get the longer v,-path

Ums Umelyores VL Ty Uy Vk—1, .- V41, V1, U2, 000y Uty Uy, Vet

R B RL A T R P PR ES

Fork+1<s<!l~—1let v,y correspond to v, in the 1:1 mapping.
Finally, suppose ! + 1 < s < m. Suppose v, € N(v;). Then v,—; ¢ N(vi—1) U N(z).
So suppose vy € N(v¢). Then v, ¢ N(z) for if it were we would get the longer v, -path

UmyVm—15--3 Vs, Uty Ve =1, ..y V1, V41, V24250005 Vs -1, T
and ve—1 € N(vi-1) or else we get the longer v,,-path
Um, Um—1y-3 Usy V1, V11, s UL, Vg1, V425 0y Vi1, Vs =1, Vg =2, -, VI, T

Soforl+1 < s <m,let vy_; correspond to v, in the 1:1 mapping.

We claim we have found a 1:1 mapping from N(v;) U N{v¢) to V(G) — (N{vi—1) U
N(z)) — {v1,vq,vi-1,2}. Clearly vy v, 01,7 € N{vi—1) U N(z). We have shown a 1:1
mapping from N{v;) U N{(v;) to a subset S of V(G) ~ (N(vi-1) U N(z)). We now claim
U1, V1, V1-1,72 ¢ S.

Suppose v; € S. Then v; = vs-; or v, where v, € N(v;)UN(v). But v; = v, implies
s=1and v; = v,; implies s =2 > k + 2, both contradictions. Thus v; € S.

Now suppose v¢ € S. Then vy = v,y or v, for some s. But vy = v,y implies
s=t+1>k+2and v, = v, implies s = ¢, both contradictions. Thus v, ¢ S.

Next suppose vj—; € S. Then v;_; = v,.; or v, for some s. But vj_; = v,-; implies
s =1!and vi-y = v, implies s = [ — 1, both contradictions. Thus v,y ¢ S.
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Finally, z ¢ S since all the image points are on P and ¢ ¢ P.
We get
(p—3)/2 <|N(v1) U N(vy)]

< V(G) = (N(vi-1) U N(z)) ~ {v1,ve, v1-1, 7}
<p-(p—-3)/2-4=(p-3)/2~1
a contradiction.
Case 2: Now suppose | = m. Then z is not adjacent to any v, where s # k,l. We look at
two cases for t, where, as in Case 1, v; is the vertex with the lowest subscript so that v; is
adjacent to v;1y and not to v,.

We claim t # k,k+1,m — 1,m. Now ¢ = k implies v, is adjacent to vx4; in which
case we get the longer v,,-path

Ums Um=1,--0s Vg1, U1, V2,00 U, T
Also t = k + 1 implies v, is adjacent to vi42 and then we would get the longer v,,-path
Umy V=13 oy V42, V1,02, 0oy Vk=1, Vk41, V&, T.

(Recall vi—yvi41 € E(G) since G is claw-free.) Now if t = m ~ 1, we have v; adjacent
to v,,. But then vy,v;m—y,2 € N(v,,). Since G is claw-free and neither vy nor vm,_y is
adjacent to z we must have v;v,,—y € E(G). But then we will get the longer v,,-path

Ums Ty Vky Vk~1y - V1L, Uin—1,Ym =2, .-y Vk41-

Thus t #£ m — 1. Finally, t # m since v; is adjacent to vyy;.

Let v, € N(v1) U N(v¢). Now if 1 < s < r we have v, € N(v;) by the definition of
r. By the definition of k, we have v,_; ¢ N(z). Also, vy—3 € N(vm-1) for if it were we
would get the longer v,,-path

VUm, Ty VkyVk—1, ey Vg V1,020 0oy Vg1 Um =1, U —2, cery V41

Thus for 1 < s < r we have v,_; € N(v1)U N{vy).
Let v, € N(v;). Then for k+ 1 < s < m — 1 we clearly have v,_; ¢ N(z). Also.
ve—1 € N(vi—1) else we get the longer v,,-path

Umy Ty Vk U3y oy UVl Usy Vs ooy Um—1 5 Vs —1, Vs =2, -0y Vik41-
Case 2.1: Suppose t < k. We will show that there is a 1:1 mapping from N(v; ) U N(z¢) to
V(G) — (N(vm-1) UN(z).
Let v, € N(v;) U N(v,). Clearly s # 1,t. Now s # k since then, on the one hand, if
vk € N(vy) we get the longer v,,-path

UmyUm—=14orey Ukl e Vb1 V=24 -y V1, VL, T
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and on the other hand, if v € N(v;) we get the longer v,,-path
Uiy Um—1y ooy Vk4 15 Uk =1, Uk =2, - U141, U], Vg, ..., U, Vk, T.
Similarly, s # k + 1 since if vy € N(v;) we get the longer v,-path
Umy U1y -y Uk 41y U1y U2,y ooy Uk, T
and if ve4y € N(v,) we get the longer vy, -path
' Um, Umet, ...‘,vk+1,v,,vt“1, s ULy Ut 1 Uth 2,y ey Uy I
Next, s # m ~ 1 since if v,y € N(v;) we get the longer v,,-path
Vmny Ty Uk y Uk =1y ooy V1 U1 Um =2, -+, Uk 1
and if vm-1 € N(v,) we get the longer v,,-path
Um s Ty Uky Uk =1y oy V41, 81, U2 oy Uty U= 1, Upn a2y veey Vi g -
Finally, we claim s # m.
Ifum € N(v1) we get {v1,v;m-1,7} € N(vm), but these three vertices are independent
contradicting the fact that G is claw-free. If v, € N(v;) then we would have the three
independent vertices vy, Um—_1,z all in N(vy,). Thus s # 1,¢,k,k+1,m — 1 or m.

We will now consider 2 subcases:

Case 2.1.1: Assume vn, is adjacent to a vertex vy with ¢ < k.
Now g # k — 1 since if vg_; € N(v;m-1) we get the longer vy, -path

Uy Ty Uk s Ukl s oooe Umm 1 s Ukm ]2 Ukm2y ony Ul
Also g # k — 2 since if vi_2 € N(vm—,) we get the longer v,,-path
Uy Ty Vky Ukl s Ukb 1y Vkb2s ooy Umnm1s Vkm2y Uk =3, ey U1 -
(Note vi-1vk41 € E(G) since G is claw-free.) Thus ¢ < k — 2.
Consider vy € N(v;) U N(v¢). We have already shown that s # 1,t,k, k+1,m —1 or

m. Wenow claims# k~1ork — 2.
Suppose s = k — 1. If vg_y € N(v;) we get the longer vy,-path

vm3$)vkyvk+ly*“)vm'-lquavq—le"'avlvvk—lsvk-—Qv"'vvq+1'
If viey € N(vy), for ¢ < t we get the longer v, -path

Um, T, vk’vk+ly"')vrn—lvvqavq-}-ls ey Uty Uk~ Uh =2y -y Ve 1, U, U7, ...,Uq_]‘
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for ¢ > t we get the longer vp,-path
vm1x1vk)vk+l)"'1vm—13UQ)vq+la"'Ivk-—l)vhvt—l1~'-)v11v!+1)vl+2)"'!vq—l

and for g = t we get the longer v,,-path

UmnyZyVk,UVk+41s---yUm—1,Vt,Vt—1,..., U1, U411, Vt42, ..y Vk—1.

Thus s # k- 1.
Now suppose s =k — 2. If vy_, € N(v;) we get the longer v,-path

vm,x,vk,vk..l,vkﬂ,...,vn,_l,vq,vq_l,...,vl,vk_g,vk_g,...,qu.
If vz € N(v¢), for g < t we get the longer v,,-path
'Um,l‘,'l)k,'vk..l,vk+1,...,’()m-l,l?q,lv‘q.,;.],...,L‘t,U[;..z,l)k-;;,...,L’t+1,v],vz,...,'Uq..]
and for ¢ > t we get the longer v,,-path
vm,:t,vk,vk_l,vk+1,...,vm_l,vq,vqﬂ,,.,,vk..g,v,,v,_l,...,vl.,v,+1,v,+2,...,vq_].

If g =t we get the longer v, -path

Ums Ty Vky Uk—15 Vk41, Vk4 20 oy Um =13 Uty Ut 1y oy V1 Ut 1, Ut 42y ooy V=2

Thus s #k - 2.

We will now construct a 1:1 mapping from N (v, )JUN(v¢) to V(G) = (N(vm-1 )UN(2)).
Let vy € N{v;) U N(vy).

First suppose 1 < s < r. Then vy_; € N{vm—3) U N(z) as above. Soforl < s < r,
let v,—; correspond to v, in the 1:1 mapping.

Next suppose r + 1 < s < t. Since v, ¢ N(v;) by the choice of ¢, we have v, € N(vy)
and vy4+1 ¢ N(z) by the choice of k. Also vyy) € N(vm—1) for of it were we would get the
longer vy,-path

Uy Ty Uk Vk41s -y Um =13 Vs 15 Va4 25 -0y Va3 Vg y Vg 15 -y V1 Vg1, Vi 24 ooy Uk 1

So for the case r + 1 < 5 < 1, let v,41 be the correspondent of v,.

Now suppose t < s < k — 2. Then v,—; ¢ N(x) by the choice of k.

Suppose vy, € N(vy). Then vyoy € N(vy, 1) for if it were we would get the longer
vm-path

Umns Ty Vkys Vk41y 3 Um=1,Vs-1,Vs~25 .13 V1, Vs, Us41y -0y Uk~ -

Now suppose vy € N(v¢). Then ve-y ¢ N(v,,-1) or else we for s > t +1 get the longer
vm-path

Uy Ty Uky Vk41s -5 Um =1, Vs -1, Va=24 - s Ut 1, UL, U2, ooy Uty Vg y Vg 1y vey Uk}
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and for s =t 4+ 1 we get the longer v,,-path

Umy Ty Vks Ukl oy Um~ 1, Vg Vg1 s ooy U, U1, Ve 2,5 -0y Vg1 -

So let v,_; be the correspondent of v, whent < s <k - 2.

Finally suppose k + 1 < s < m — 1. Then v,—;.¢ N(z) by the definition of I.

Then if v, € N(v;) we have already shown v,_; € N(vm-1). Also, if v, € N(v¢) we
have v,_; € N(v;n—1) for if it were we would get the longer v,,-path

Uy Ty Uk Uk415 -3 Vs—1, VUm—1,Um =25 ...3 Vg Uty Uty -+ oy V1, V141, V42, ooy Vi1 -

Sofor k +2 < s < m—1, let vy~ be the vertex corresponding to v, in the 1:1 mapping.

Note that v; has been used as an image point twice, once for the case r +1 < s < t
and again where t < s < k — 2. We claim to have found a 1:1 mapping from N(v;) U
N(v¢) — ve—y to V(G) = (N(vm-1) UN(2)) = {vk-2,Vk=1,Um-1,2}. Now we have shown
that vg—2,vk<1,vm-1,2 § N{vm-1)UN(z). (Recall that at the beginning of Case 2.1.1 we
showed that vi—2,vx-1 € N(vm-1). Clearly we have shown a 1:1 mapping from N(v,} U
N(v¢)—ve—y to asubset S of V(G)— (N (vm=;)UN(z)) we now claim vg—2,vk~1,0m-1,2 ¢
S.

Suppose vi_, € S. Then vi_2 = v,_; or vy where vy, € N{v;) U N(v). But
Vk—2 = Vg1 implies s = k — 1 a contradiction. Also vx—_9 = ve4; Implies s =k -3 < ¢, so
t=k—-2o0rk~—1 Butt==~-—2unplies vy is adjacent to vx—; and t = k — 1 implies v; is
adjacent to v, both false. Thus vi., ¢ S.

Next suppose vi—y € S. Then vg—1 = v,—; or ve4; where vy € N(v;) U N(v¢). But
Vi-1 = Us—y implies s = k, a contradiction. Also vy_; = v,4; implies s =k —2 < ¢, so
t =k —1. But t = k — 1 implies v; is adjacent to v;, a contradiction. Thus vy € S.

Now suppose vim—1 € S. Then v, -1 = vs—1 or vs4; for some s with v, € N(v;) U
N(v¢). But v,y = v,y implies s = m and v;p,—1 = v,4; implies s = m — 2 < ¢, both
contradictions. Thus vm—; ¢ S.

Finally suppose z € S. Then z is the image point of some v, € N(v;) U N(vy). But
all the image points areon P and z ¢ P. Thusz ¢ S.

We get

(p=3)/2= 1< |N(01) U N(v0) = vims]

<IV(G) = (N(vm-1)U N(2)) = {rr-2,Vk~1,Vm-1. 2}
<p—-{(p=-3)/2-4=(p-3)/2~-1

a contradiction.

Case 2.1.2: So we can assume v is not adjacent to any vertex vy with ¢ < k.

First suppose s < k —~ 1. Then v, ¢ N(z) by the choice of k and by hypothesis
vy € N(vm-1). Thus for s < k — 1, let v, be the vertex corresponding to v, in the 1:1
mapping.

Next suppose k + 1 < s < m — 1. Then v,y ¢ N(z) by the choice of [.
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Suppose v, € N(v1). Then vs—y ¢ N(vm—1) as above. So suppose v, € N(v¢). Then
Vg—1 ¢ N(vpm-1) for if it were we would get the longer vn,-path

Umy Ty VkyUk~1;3 -0y Ut41, U1, V25 .., Uty Usy Ust 15 -y Um—~1 3 Us—1, Us—25 .-y Vk 41

Sofor k+1<s<m-—1let vy_; correspond to v, in the 1:1 mapping.

We claim we have shown the existence of a 1:1 mapping from N(v, )UN(v) to V(G)—
(N(vm-1)UN(z)) = {v1,vt,vm-1,2}. Note that v1,v¢,vm-1,Z € N(vm-1)UN(z). Clearly
we have shown a 1:1 mapping from N (v, )JUN(v;) to a subset S of V(G)—(N(vm-1 JUN(z)).
We now claim vy, vy, vm-1,2 ¢ S.

First suppose vy € S. Then v; = v, or v,~; where v, € N(v;) U N(v;). But v; = v,
implies s = 1 and v; = v,_; implies s = 2 > k + 1, both contradictions. So vy ¢ S.

Next suppose vy € S. Then vy = v, or v,—; for some v, € N(v;) U N(v¢). But if
vs = v, we get s = t, a contradiction and if vy = vy weget s=t4+1>k+1,s50¢ >k,
again a contradiction. Thus v, ¢ S.

Now suppose vp,m—; € S. Then v,y = v, or v,y for some s. But vn_; = v, implies
s=m —1 and vpm-1 = v, implies s = m, both contradictions. Thus vm-1 ¢ S.

Finally supposez € S. Then z = v, or 51, butz ¢ P. Sox ¢ S.

We get the following:

(p—3)/2 < |N(v1) UN(ve)]

< ]‘/(G) - (Ar(vm—l) U "\’-(I)) - {vl,vt,vm—lax}l
<p-(p-3)2-4=(p-3)/2-1

a contradiction.

Case 2.2: Supposek+1<t<m—~1.
We will show that there is a 1:1 mapping from N{v1) U N(v¢) to V(G) — (N(vm-1) U
Recall v, € N(v1) U N(v¢). Clearly s # 1 or ¢.
We claim s # k,m -1 or m.
We first claim s # k. If v, € N(v;) we get the longer vm,-path

UmsUm—=1c s Ukt Vhk=1. Vk=2...., V1, V4. T
and if vy € N(vy) we get the longer v,,-path

Ums Umn—=1,5 -y Ur£1, 01,02, oy Pk 1, Uk 1, Vk4 25 -y U, Uk, T

(Recall that vi_1vi+1 € E(G) since G is claw-free.) Thus s # k.
Next, we claim s # m — 1. If v;n_; € N(v;) we get the longer v,-path

U,y Ty UkyVh41s -y Um—=153U1,V2, ..., Vk—1
and if v~y € N{v,) we get the longer vy, -path
U s Ty Uk Uk ls ooy Uty Um—1, Um =24 -y V41, V1, V2,5 .00y Vk—1-
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Thus s # m - 1.

Finally we claim s # m. If v, € N(vi), we get vj,vm—1,2 € N{(vm). But these
three vertices are independent, a contradiction to the fact that G is claw-free. Also if
Um € N(v¢), we get vy, Um-1,7 € N(vm) and again these are independent contradicting
the fact that G is claw-free. Thus s # m.

Let vy € N(v1)UN(v;) witht < s < m—1. We have already shown that if v, € N(v,},
thenfor k+1 < s < m—1 we have v,_1 ¢ N{vm_1)UN(z). In particular, if s = ¢t +1 then
Vs—1 & N(vm-1 UN(z). So suppose vsinN(vy) witht+1 < s < m—1. Then by the choice
of I, vs—1 ¢ N(z) and vs—1 ¢ N(vm—) for if it were we would get the longer v,-path

Ym, T,V V=153 V1, V41, V42, ey Vg1 Vm—1,Vm=2, -y Vg Ut s Ut—1, -5 Vk+1-

Thus, if v, € N{v;) U N(vy) with t <s < m ~ 1 we have v,—1 ¢ N(vm-1) U N(z).
We now consider two cases;

Case 2.2.1: Assume vy, is adjacent to some vertex v, where ¢ < k. Then as in Case
211, ¢q#k -2,k - 1.

Suppose v, € N(v1) U N(ve). We have already shown that s # 1,t,k,m —1 or m. We
now claim s # k — 1 or k — 2. Now vx_y ¢ N(v;) for if it were we would get the longer
vm-path

Um sy Ty Vky Vhk+1s -5 Vm—1, Vg, UVg—1.-.y V1, Vh =1, Vk =2, ..., Ug+1

and vp—y ¢ N(v;) else we get the longer vp,-path

UmyUm—1,+ s UVt41: V1, V20 000y U1, Uty Ut =1, 0o, Uk, T

Thus s # k — 1.

Next vi—o ¢ N(vy) for if it were we would get the longer vp,-path
Um, Ty Uk, Vk—1, Vhk+1: Vk42: s Um =1, Vg, Vg—1: .-y U1, Vk -2, Vk -3, eey Vg1
and vi_, ¢ N(v) else we get the longer v, -path

UmyUm=1,--sVt41.V15,V2, e Vkw2, Uty Utm1 s ooy Uk 1, Uk =1, Uk, T

Thus s # k — 2.

We will now construct a 1:1 mapping from N (v )JUN(ve) to V(G) —(N{vm—1 )UN(z)).
Recall that v, € N(v1)U N(vy).

First suppose 1 < s < r. Then as above v4_y ¢ N(vm-1) UN(z). Sofor 1 <s <.
let v,—; correspond to v, in the 1:1 mapping.

Now suppose r +1 < s < k—~2or k < s < t. Then by the choice of t and the
definition of r, v, € N(v;) so suppose v, € N(v;). Now v,4; € N{z) by the choice of k.
Also vy4y € N(vp-1) else for s < k — 2 we get the longer vy,-path

Um s Ty Vs Uk gy o a Uty Vg Vg 15 ooy V3o Ut 10 Ut 20 o U= 1 Ugp 1 Ug 425 +oos Uk =3
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and for s > &k we get the longer vn,-path

Umy Ty Vky V=133 V13 Ut 1, V142, s Um =1, Va3 1, Va4 2y -y Uty Usy Vg—1y ooy Vk g1 -

Soifeitherr+1<s<k~2ork<s<t,let v,y bethe correspondent of v,.

Finally suppose ¢t < s < m — 1. Then as above, we have v, ¢ N{vm-;)U N(z). So
fort < s <m —1, let v, be the vertex corresponding to v, in the 1:1 mapping.

Note that v, has been chosen as an image point twice, once for the case k < s < t and
again for t < s < m—1. We claim we have found a 1:1 mapping from N{v; JUN(vy) — vy
to V(G)—(N(vm-1)UN(z))—{vk-1,Vk+1,Vm-1,z}. Clearly we have shown a 1:1 mapping
from N(v;) U N(v:) — vi—; to a subset S of V(G) — (N(vm-1) U N(z)). We now claim
Vk~1yVk4+1yVm-1,T ¢ S.

First suppose vg~y € S. Then vi_; = vy or vs41 where v, € N(v;) U N(v). But
Vk—1 = vy—1 implies s = k and vir—; = vs4y implies s = k — 2, both contradictions. Thus
Vk-1 e S

Next suppose vty € S. Then viy; = v,y Or vey for some s. But vy = vy
implies s = k + 2 < r contradicting the fact that » < k, or s = k + 2 > t contradicting the
hypothesis of Case 2.2 that t > k 4+ 1. Also v141 = v,4+1 implies s = k, a contradiction.
Thus Uk Q S.

Now suppose vpm—1 € S. Then vym—y = vy—1 Or vs4; for some s with v, € N(vy JUN(vy).
But vm—; = v,—; implies s = m a contradiction. Also vy,—; = vey; implies s = m -2 < ¢,
but ¢t < m — 1 by the hypothesis of Case 2.2. another contradiction. Thus v,; € S.

Finally z ¢ S since all the image points are on P and z ¢ P.

Now clearly vpm—1.2 € N(vm—1)U N(z) and vi_y,vr41 € N(z). We will now show
that veoy,ve41 € N(vm-1). If vy € V(vm-1) we get the longer v,,-path

Um s T, V%5 Vk+1- ooy Um=14 Uk =1, Vk~2, ..., V1
Now if vk41 € N(vm-1) we get the longer t,-path
Umy LoV Vk—14--.a V1, U031, 0220 ooy Ui =1 Uk 1, V42,5 -4, Ut

Thus V1, VY41, Vm—-1,T é JV(Um_]) U .\’.(l‘).
We get
(p=3)/2 =1 <|N(v1)UN(vy) — vgy]

< lV(G) - (‘\"u'mul)u -'\r(‘r)) - {Uk—-lavk-*lsvm—l"r}'
<p-(p-3)/2-4=(p-3)/2-1

a contradiction.

Case 2.2.2: So we can assume vy, —; is not adjacent to any vertex v, with ¢ < k.

Let v, € N{v;) U N(vy). We will now construct our 1:1 mapping.

First suppose s < k — 1. Then by the choice of &, v, ¢ N(z) and by hypothesis
vy & N(Uyn-1). Sofor s < k-1, let v, be its own correspondent in the 1:1 mapping.
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Next suppose k < s < t. Then by the choice of ¢, v, ¢ N(v;) so we will suppose
vy € N(v¢). By the choice of | we have v,41 ¢ N(z). Also vy41 € N(vm—y) for if it were
we would get the longer vn,-path

VUmyTyVkyVk4+1y--3 Vsy Vgy Vt—1, - s Vs41,Vm~1,Vm—=2, -y Vt+1, L1, V2, ..., Vk—1-

For the case k < s < t, let vy4; correspond to v, in the 1:1 mapping.

Finally supposet < s < m—1. Then v,—; ¢ N(vmm-1)UN(z) as we have shown above.
Sofort < s <m —1, let v,_; be the correspondent of v, ir. the desired 1:1 mapping.

Note that v; has been chosen as an image point twice, once for the case k < s < t and
again for t < s < m—1. We claim we have found a 1:1 mapping from N(v; YUN(v;) — ve—y
to V(G) = (N(vm-1)U N(z)) — {v1,vk41,Vm-1,7}.

Clearly we have shown a 1:1 mapping from N(v;) U N{v;) — vi—; to a subset S of
V(G) — (N{vm=1) U N(z)). We now claim vy, ve41,0m-1,2 € 5.

First suppose v; € S. Then v; = v,.vy_; or vy4; where v, € N(vy) U N(v¢). But
vy = v, implies s = 1, v; = v,4; implies s = 0 and vy = v,—; imphes s = 2 > ¢, all
contradictions. Thus v; ¢ S.

Now suppose vr4; € S. Then vig) = v, v5-1 oOr vyy) for some s with vy € N(v;) U
N(v¢). But vg41 = v, implies s = k+ 1 < k-1, a contradiction. Next vy} = v,—; imrlies
s=k+2>t butt>k+1by the hypothesis of Case 2.2. Finally viy1 = ve41 implies
s = k, a contradiction. Thus 1441 € S.

Next suppose v;,—1 € S. Then v;m-y = v,,v,-1 or v,41 for some s. But vm—; = v,
implies s = m — 1 and vp—1 = vy—1 implies s = m2, both contradictions. Also vm—) = Uyt
implies s = m — 2 < ¢, but t < m — 1 by the hypothesis of Case 2.2. Thus v,y ¢ S.

Finally, suppose z € S. Then r is the image point of some v, € N(v1) U N(v). But
all the image points areon Pand z ¢ P. Thusz ¢ S.

Now clearly vy, vm—1, 7 € N(tm-1)UN(z) and v;4; € N(z). It remains to show that
vk+1 € N(vm-1). Now if 143 € N{vm-1) we get the longer vy-path

Uy Ty Chy U1,y -y Uy 1, UL 220 Um =1 Uk, Uh42, -4, Ut
Thus v1, k41, %m-1,T & N(vm=1) U N(2).
We get
(p—3)/2 =1 <|N(e1)UN(ve) = v
S IV(G) - (1\7(1‘,n_1)U .'\'(.T)) - {t’].t?k+].v,n_1.r}|
<p—-(p-3)/2-14=(p-3)/2-1

a contradiction. O

The graph in Figure 1 is 2-connected, claw-free and not homogeneously traceable.
Here, [N(u) U N(v)| = 2n + 2 = (p — 4)/2, so the bound in Theoremn 6 is aln.ost best
possible.

The graph shown in Figure 2 is homogeneously traceable, with |[N(u) U N(v)| =
(p—2)/2, so Theorem 3 tells us nothing about this graph, whereas Theorem 6 tells us that
it is homogeneously traccable.
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